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Abstract
We choose the five-parameter exponential-type potential model as input,
and construct five trigonometric-type potentials via point canonical
transformations. Their energy spectra and wavefunctions are obtained in
a unified manner by using the expressions for the energy spectra and
wavefunctions of the five-parameter exponential-type potential model.

PACS numbers: 03.65.Fd, 03.65.Ge

1. Introduction

The study of spectral problems for exactly solvable potentials has been the subject of many
investigations. Many exactly solvable potentials are hyperbolic or trigonometric functions
of the spatial coordinate [1, 2]. These solvable potentials are widely used in physics [3].
For the solvable hyperbolic-type and trigonometric-type potentials with shape invariance [1],
the corresponding Schrödinger equation can be reduced to a hypergeometric equation. De
et al [4] studied the inter-relation for five hyperbolic-type potentials and three trigonometric-
type potentials via point canonical transformations (PCT). PCT have been studied in the
path integral approach to quantum mechanical problems [5]. Using PCT and shape-invariant
potentials as input, Dutt et al [6] obtained a new class of one-dimensional conditionally exactly
solvable potentials. Kocak et al [7] applied PCT to inter-connect non-central potentials among
themselves for mapping purposes.

In 2002, we [8] proposed an exactly solvable five-parameter exponential-type potential
model (FPEPM), which contains five exactly solvable hyperbolic-type potentials discussed
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by De et al in [4], i.e., the Rosen–Morse well, Eckart, Scarf II, generalized Pöschl–Teller
and Pöschl–Teller II potentials. Their complex versions with PT symmetry [9] and pseudo-
Hermiticity [10] are also included in FPEPM as special cases [11]. For the corresponding
trigonometric-type potentials, their complex versions have been studied in detail by Lévai
and Znojil [12]. Recently, Ramazan and Mehmet [13] constructed the five trigonometric-type
potentials with the help of a general form of the generators of su(1, 1) algebra. However, they
gave only closed analytic expressions for the energy spectra, and did not give the wavefunction
expression in a closed form. The aim of this paper is to obtain trigonometric-type potentials
from the stated FPEPM and point canonical transformation, in order to see if the method
can reproduce the known solutions for these trigonometric-type potentials. We do this in this
paper to obtain closed analytic expressions both for the energy spectra and wavefunctions. The
wavefunction expression for the Scarf I potential given in the present work is, to the best of our
knowledge, not stated in the published literature. The inter-relations presented in this paper
are useful for a unified treatment of the exponential-type potentials and the corresponding
trigonometric-type potentials.

The arrangement of this paper is as follows. In section 2, we review briefly PCT in non-
relativistic quantum mechanics. In section 3, we give a brief survey of FPEPM. In section 4,
we construct five trigonometric-type potentials by using FPEPM and the method of PCT.
Finally, we give some concluding remarks in section 5.

2. Point canonical transformations

In this section, we review briefly the method of PCT [4]. For a one-dimensional potential
V (x), the Schrödinger equation is(

− d2

dx2
+ V (x)

)
�(x) = E�(x). (1)

Throughout this paper we take natural units, 2m = h̄ = 1, h̄ = h
2π

, h is the Planck constant.
Invoking a transformation x → u through a mapping function

x = f (u), (2)

and rewriting the wavefunction in the form

�(x) =
√

df (u)

du
�̃(u), (3)

we obtain a transformed Schrödinger equation(
− d2

du2
+ Ṽ (u)

)
�̃(u) = Ẽ�̃(u), (4)

where the new potential Ṽ (u) is given by

Ṽ (u) − Ẽ = f ′2[V (f (u)) − E] +
1

2

[
3

2

(
f ′′

f ′

)2

− f ′′′

f ′

]
, (5)

where the prime denotes differentiation with respect to the variable u.
Putting an exactly solvable potential as V (x) and choosing a proper mapping function

f (u), one can obtain a new analytically solvable potential Ṽ (u), the energy spectrum and
wavefunction of which can be expressed in a closed form. In the present work, we choose
FPEPM as the old potential V (x) and construct five trigonometric-type potentials by using the
method of PCT.
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3. Five-parameter exponential-type potential model

In [8], we proposed FPEPM, which can be expressed in the form of [14]

V (x) = − g

2q
tanhq αx − γ sech2

q αx +
gQ3

2Q2
sechq αx − η sechq αx · tanhq αx, (6)

where the range of parameter q is q > 0 for −∞ < x < ∞, and −1 � q < 0 or q > 0 for
0 � x < ∞. The parameters Q2 and Q3 are functions of γ and η. Their relationships are
given by

Q2
2 − qQ2

3 − 2αqQ2 = 4qγ, (7)

Q2Q3 − αqQ3 = 2qη. (8)

In equation (6), we have applied the deformed hyperbolic functions, which are defined by [15]

sinhq x = ex − q e−x

2
, coshq x = ex + q e−x

2
, sechq x = 1

coshq x
,

cosechq x = 1

sinhq x
, tanhq αx = sinhq αx

coshq αx
, cothq αx = coshq αx

sinhq αx
,

(9)

where q > 0 is a real parameter. When q is complex, we call the above deformed hyperbolic
functions the generalized deformed hyperbolic functions. Applying the deformed hyperbolic
functions, some exact solutions of the multi-component nonlinear Schrödinger and Klein–
Gordon equations have been obtained [16]. With the help of the deformed hyperbolic functions,
some deformed hyperbolic molecular potentials [17] and pseudo-Hermitian potentials [11] are
also constructed. Recently, de Lima and de Lima Rodrigues [18] used the deformed hyperbolic
functions in the stability equation, and constructed the deformed topological kink associated
with the deformed φ4 potential model.

When Q3 = 0, the allowed value of the energy E for the potential (6) is given by [14]

En = −
(

g

4αq

)2 1(
n + 1

2 −
√

γ

qα2 + 1
4

)2
− α2

(
n +

1

2
−

√
γ

qα2
+

1

4

)2

, (10)

where the quantum number n satisfies the restriction, n <
√

γ

qα2 + 1
4 − 1

2 , n = 0, 1, 2, . . . .

The corresponding unnormalized wavefunction is expressed in terms of Jacobi polynomials
as [14]

�n(x) = �(−2p)�(n)

�(n − 2p)

(
1 + tanhq αx

2

)−p (
1 − tanhq αx

2

)−r

P −2p, −2r
n (−tanhq αx), (11)

where

p = 1

2


n +

1

2
−

√
γ

qα2
+

1

4
+

g

4qα2

1(
n + 1

2 −
√

γ

qα2 + 1
4

)

 , (12)

r = 1

2


n +

1

2
−

√
γ

qα2
+

1

4
− g

4qα2

1(
n + 1

2 −
√

γ

qα2 + 1
4

)

 . (13)
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When g = 0, the energy spectrum for the potential (6) is given by [14]

En = −α2

[
−n − 1

2
+

1

2

(
σ

√
1

4
+

γ

qα2
+

η

iα2q1/2
+ τ

√
1

4
+

γ

qα2
− η

iα2q1/2

)]2

, (14)

where σ = ±1 and τ = ±1. The unnormalized wavefunction for the potential (6) is given by
[14]

�n(x) = 1

(coshq αx)p+r
exp((p − r) tanh−1(iq−1/2 sinhq αx))

×P
−2p− 1

2 , −2r− 1
2

n (iq−1/2 sinhq αx), (15)

where

p = −1

4
+

σ

2

√
1

4
+

γ

qα2
+

η

iα2q1/2
, (16)

r = −1

4
+

τ

2

√
1

4
+

γ

qα2
− η

iα2q1/2
. (17)

The condition of the normalizability of the function (15) limits the range of admissible quantum
numbers n via

n < Re

[
1

2

(
σ

√
1

4
+

γ

qα2
+

η

iα2q1/2
+ τ

√
1

4
+

γ

qα2
− η

iα2q1/2

)]
− 1

2
.

If we take Q3 = 0, we obtain η = 0 from equation (8). Considering the above restriction
condition for the quantum number n, both of σ and τ can only be taken ±1. Thus, in the case
of g = 0 and Q3 = 0, equation (10) is identical to equation (14).

4. Mapping of FPEPM into trigonometric-type potentials

In this section, we construct some trigonometric-type potentials by using the method of PCT.
We also investigate the energy spectra and wavefunctions for the trigonometric-type potentials
by using the expressions for the energy spectra and wavefunctions of FPEPM. In our scheme,
first, we choose the particular values of the parameters in FPEPM expressed in equation (6).
Second, invoking a transformation of the independent variable x = f (θ), we take the potential
(6) as the old potential and express it in the variable θ . Third, using equation (5), we obtain
the new potential with trigonometric-type, and get the relations among the parameters by
comparing the coefficients of the corresponding terms in the expressions of the old potential
and new potential. Fourth, using the energy spectrum expression of the old potential and the
relations among the parameters, we obtain the energy eigenvalues of the new potential. Fifth,
with the help of the wavefunction expression for the old potential and the relations among the
parameters, we get the wavefunction expression for the new potential. Finally, we compare
our results with those obtained in other methods.

4.1. Rosen–Morse I potential

Under the condition −π
2 � αθ � π

2 , using the transformation x → θ through a mapping
function

x ≡ f (θ) = 1

α
ln

(
1 − sin αθ

cos αθ

)
, (18)
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and choosing g = 0, q = 1, FPEPM expressed in equation (6) becomes

V (x) = −γ cos2 αθ + η sin αθ cos αθ. (19)

Substituting equations (18) and (19) into (5), we obtain

Ṽ − Ẽ = −γ − α2

4
+

(
−E − α2

4

)
sec2 αθ + η tan αθ. (20)

For the Rosen–Morse I potential, we write Ṽ as

Ṽ = −A2 +
B2

A2
+ A(A − α) sec2 αθ + 2B tan αθ. (21)

Comparing the coefficients of the corresponding terms in equations (20) and (21), we have

−γ − α2

4
+ Ẽ = −A2 +

B2

A2
, (22)

−E − α2

4
= A(A − α), (23)

η = 2B. (24)

Using the expression for (14), solving equations (23) and (24) yields

γ = (A + nα)4 − B2

(A + nα)2
− α2

4
. (25)

Substituting (25) into (22), we obtain the energy spectra for the Rosen–Morse I potential,

Ẽn = −A2 +
B2

A2
+ (A + nα)2 − B2

(A + nα)2
. (26)

Replacing η and γ in equations (16) and (17) by the expressions given in equations (24) and
(25), respectively, we obtain

p = −1

4
+

1

2

[
A + nα

α
− iB

α(A + nα)

]
, (27)

r = −1

4
+

1

2

[
A + nα

α
+

iB

α(A + nα)

]
. (28)

Substituting the above expressions into equation (15) and using the wavefunction
transformation (3) and coordinate transformation (18), we obtain the unnormalized
eigenfunctions of the Rosen–Morse I potential,

�̃n(θ) = (1 + tan2 αθ)−
A+nα

2α exp

(
− B

A + nα
θ

)
P

− A+nα
α

+ iB
α(A+nα)

,− A+nα
α

− iB
α(A+nα)

n (−i tan αθ). (29)

This result coincides completely with the result given by De et al in table 2 of [4].

4.2. Trigonometric-type Eckart potential

Invoking a transformation of the independent variable

x ≡ f (θ) = 1

α
ln

(
1 − cos αθ

sin αθ

)
, (30)

and choosing g = 0, q = 1, FPEPM expressed in equation (6) becomes

V (x) = −γ sin2 αθ + η sin αθ cos αθ. (31)
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The parameter range of θ is 0 � αθ � π . Substituting equations (30) and (31) into (5), we
obtain

Ṽ − Ẽ = −γ − α2

4
+

(
−E − α2

4

)
cosec2 αθ + η cot αθ. (32)

We consider the trigonometric-type Eckart potential, and write Ṽ as

Ṽ = −A2 +
B2

A2
+ A(A + α) cosec2 αθ − 2B cot αθ. (33)

Comparing the coefficients of the corresponding terms in equations (32) and (33), we have

−γ − α2

4
+ Ẽ = −A2 +

B2

A2
, (34)

−E − α2

4
= A(A + α), (35)

η = −2B. (36)

With the help of expression (14), solving equations (35) and (36), we obtain

γ = (A − nα)4 − B2

(A − nα)2
− α2

4
. (37)

Substituting the expression of γ given in equation (37) into (34), we obtain the energy spectra
for the trigonometric-type Eckart potential,

Ẽn = −A2 +
B2

A2
+ (A − nα)2 − B2

(A − nα)2
. (38)

From equations (16) and (17), we obtain

p = −1

4
+

1

2

[
A − nα

α
+

iB

α(A − nα)

]
, (39)

r = −1

4
+

1

2

[
A − nα

α
− iB

α(A − nα)

]
. (40)

Substituting the above expressions into equation (15) and using the coordinate transformation
(30), we obtain the eigenfunctions of the trigonometric-type Eckart potential,

�̃n(θ) = (sin αθ)
A−nα

α exp

(
B

A − nα
θ

)
P

A
α
−n+i B

α(A−nα)
, A

α
−n−i B

α(A−nα)

n (−i cot αθ). (41)

The results given in equations (38) and (41) are consistent with the results given by Lévai in
table 1 of [2].

4.3. Scarf I potential

In the case of −π
2 � αθ � π

2 , the Scarf I potential can be constructed by introducing a
mapping function

x ≡ f (θ) = 1

α
ln

(
1 − sin αθ

cos αθ

)
, (42)

and putting Q3 = 0, q = 1. Making the corresponding replacements for the parameters in
equation (6), FPEPM takes the form

V (x) = g

2
sin αθ − γ cos2 αθ. (43)
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Substituting equations (42) and (43) into (5), we obtain

Ṽ − Ẽ = −γ − α2

4
+

(
−E − α2

4

)
sec2 αθ +

g

2
sec αθ tan αθ. (44)

We consider the Scarf I potential, which takes the form

Ṽ = −A2 + (A2 + B2 − αA) sec2 αθ − B(2A − α) sec αθ tan αθ. (45)

Comparing equations (44) and (45), we have

−γ − α2

4
+ Ẽ = −A2, (46)

−E − α2

4
= A2 + B2 − αA, (47)

g

2
= −B(2A − α). (48)

Using the energy spectrum expression (10), we solve equations (47) and (48), and get

γ = (A + nα)2 − α2

4
. (49)

Substituting (49) into (46), we obtain the energy spectra for the Scarf I potential,

Ẽn = −A2 + (A + nα)2. (50)

Substituting the expressions for g and γ given in equations (48) and (49) into equations (12)
and (13), we obtain

p = 1

4
− A

2α
+

B

2α
and r = 1

4
− A

2α
− B

2α
. (51)

Substituting the above expressions into equation (11), and using the mapping coordinate
transformation (42) and wavefunction transformation (3), we obtain the eigenfunctions of the
Scarf I potential,

�̃n(θ) =
(

1 − sin αθ

2

) A
2α

− B
2α

(
1 + sin αθ

2

) A
2α

+ B
2α

P
− 1

2 + A
α
− B

α
,− 1

2 + A
α

+ B
α

n (sin αθ). (52)

To the best of our knowledge, this result given in equation (52) has not been reported earlier
in the literature.

4.4. Trigonometric-type generalized Pöschl–Teller potential

Under the condition 0 � αθ � π , we use the transformation x → θ through a mapping
function

x ≡ f (θ) = 1

α
ln

(
1 − cos αϑ

sin αθ

)
, (53)

and choose Q3 = 0, q = 1. In this case, FPEPM expressed in equation (6) becomes

V (x) = −g

2
cos αθ − γ sin2 αθ. (54)

Substituting equations (53) and (54) into (5), we obtain

Ṽ − Ẽ = −γ − α2

4
+

(
−E − α2

4

)
cosec2 αθ +

g

2
cosec αθ cot αθ. (55)
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For the trigonometric-type generalized Pöschl–Teller potential, we write Ṽ in the form

Ṽ = −A2 + (A2 + B2 − αA) cosec2 αθ − B(2A − α) cosec αθ cot αθ, (56)

where A > B. Comparing equations (55) and (56), we have

−γ − α2

4
+ Ẽ = −A2, (57)

−E − α2

4
= A2 + B2 − αA, (58)

g

2
= −B(2A − α). (59)

Using the energy spectrum expression (10), solving equations (58) and (59) yields

γ = (A + nα)2 − α2

4
. (60)

Substituting (60) into (57), we obtain the energy spectra for the trigonometric-type generalized
Pöschl–Teller potential,

Ẽn = −A2 + (A + nα)2. (61)

Here, we recover the energy spectrum expression presented by De et al in table 2 of [4]. From
equations (12) and (13), we obtain

p = 1

4
− A

2α
+

B

2α
and r = 1

4
− A

2α
− B

2α
. (62)

With the help of equations (3), (53) and (61), we obtain the eigenfunctions of the trigonometric-
type generalized Pöschl–Teller potential,

�̃n(θ) =
(

1 − cos αθ

2

) A−B
2α

(
1 + cos αθ

2

) A+B
2α

P
A
α
− B

α
− 1

2 , A
α

+ B
α
− 1

2
n (cos αθ). (63)

This result coincides completely with the result given by De et al in table 2 of [4].

4.5. Pöschl–Teller I potential

In order to construct the Pöschl–Teller I potential, we choose Q3 = 0, q = 1 and introduce a
mapping function

x ≡ f (θ) = 1

α
ln(tan αθ), (64)

where 0 � αθ � π
2 . Substituting x into (6), FPEPM reads

V (x) = g

2
(2 sin2 αθ − 1) − 4γ sin2 αθ cos2 αθ. (65)

Substituting equations (64) and (65) into (5), we obtain

Ṽ − Ẽ = −α2 − 4γ +

(
−g

2
− E − α2

4

)
sec2 αθ +

(
g

2
− E − α2

4

)
cosec2 αθ. (66)

For the Pöschl–Teller I potential, we write Ṽ in the form

Ṽ = −(A + B)2 + A(A − α) sec2 αθ + B(B − α) cosec2 αθ. (67)
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Comparing equations (66) and (67), we have

−α2 − 4γ + Ẽ = −(A + B)2, (68)

−g

2
− E − α2

4
= A(A − α), (69)

g

2
− E − α2

4
= B(B − α). (70)

Substituting expression (10) into equations (69) and (70), we obtain

g = B2 − αB − A2 + αA, (71)

γ = 1

4
(A + B + 2nα)2 − α2

4
. (72)

Substituting (72) into (68), we obtain the energy spectra for the Pöschl–Teller I potential,

Ẽn = −(A + B)2 + (A + B + 2nα)2. (73)

This result coincides completely with the result given by De et al in table 2 of [4]. Substituting
equations (71) and (72) into equations (12) and (13), we obtain

p = 1

4
− B

2α
and r = 1

4
− A

2α
. (74)

Considering the wavefunction transformation (3) and coordinate transformation (64), we
obtain the eigenfunctions of the Pöschl–Teller I potential by substituting equation (74)
into (11),

�̃n(θ) =
(

1 − y

2

) B
2α

(
1 + y

2

) A
2α

P
B
α
− 1

2 , A
α
− 1

2
n (y), (75)

where y = 1 − 2 sin2 αθ . This result of (75) coincides completely with the result given by
De et al in table 2 of [4].

5. Conclusions

In the present work, we choose special mapping functions for the FPEPM via PCT,
and construct the Rosen–Morse I, trigonometric-type Eckart, Scarf I, trigonometric-
type generalized Pöschl–Teller and Pöschl–Teller I potentials. The energy spectra and
wavefunctions for the trigonometric-type potentials are obtained in a unified manner by using
the expressions for the energy spectra and wavefunctions of the FPEPM. If we choose a proper
mapping function for the coordinate transformation, and take FPEPM as input, we can also
obtain other exactly solvable potentials via PCT.
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